Adaptation as a mechanism for gain control in an insect thermoreceptor.
نویسندگان
چکیده
Adaptation controls the gain of the input-function of the cockroach's cold cell during slowly oscillating changes in temperature. When the oscillation period is long, the cold cell improves its gain for the rate of temperature change at the expense of its ability to code instantaneous temperature. When the oscillation period is brief, however, the cold cell reduces this gain and improves its sensitivity for instantaneous temperature. This type of gain control has an important function. When the cockroach ventures from under cover and into moving air, the cold cell is confronted constantly with brief changes in temperature. To be of any use, a limit in the gain for the rate of change seems to be essential. Without such a limit, the cold cell will always indicate temperature change. The decrease in gain for the rate of change involves an increase in gain for instantaneous temperature. Therefore the animal receives precise information about the temperature at which the change occurs and can seek an area of different temperature. If the cockroach ventures back under cover, the rate of change will become slow. In this situation, a high gain improves the ability to signal slow temperature changes. The cockroach receives the early warning of slow fluctuations or even creeping changes in temperature. A comparison of the cold cell's responses with the temperature measured inside of small, cylindrical model objects indicates that coding characteristic rather than passive thermal effects of the structures enclosing the cold cell are responsible for the observed behavior.
منابع مشابه
Sensorless Indirect Field Oriented Control of Single-sided Linear Induction Motor With a Novel Sliding Mode MRAS Speed Estimator
This paper proposes a new sliding mode control (SMC) based model reference adaptive system (MRAS) for sensorless indirect field oriented control (IFOC) of a single-sided linear induction motor (SLIM). The operation of MRAS speed estimators dramatically depends on adaptation mechanism. Fixed-gain PI controller is conventionally used for this purpose which may fail to estimate the speed correctl...
متن کاملDesign of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System
Sometimes conventional feedback controllers may not perform well online because of the variation in process dynamics due to nonlinear actuators, changes in environmental conditions and variation in the character of the disturbances. To overcome the above problem, this paper deals with the designing of a controller for a second order system with Model Reference Adaptive Control (MRAC) scheme usi...
متن کاملImproving Linearity of CMOS Variable-gain Amplifier Using Third-order Intermodulation Cancellation Mechanism and Intermodulation Distortion Sinking Techniques
This paper presents an improved linearity variable-gain amplifier (VGA) in 0.18-µm CMOS technology. The linearity improvement is resulted from employing a new combinational technique, which utilizes third-order-intermodulation (IM3) cancellation mechanism using second-order-intermodulation (IM2) injection, and intermodulation distortion (IMD) sinking techniques. The proposed VGA gain cell co...
متن کاملPeaking Attenuation in High-Gain Observers Using Adaptive Saturation: Application to a Ball and Wheel System
Despite providing robustness, high-gain observers impose a peaking phenomenon, which may cause instability, on the system states. In this paper, an adaptive saturation is proposed to attenuate the undesirable mentioned phenomenon in high-gain observers. A real-valued and differentiable sigmoid function is considered as the saturating element whose parameters (height and slope) are adaptively tu...
متن کاملGCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis
Certain thermoreceptor neurons are sensitive to tiny thermal fluctuations (0.01°C or less) and maintain their sensitivity across a wide range of ambient temperatures through a process of adaptation, but understanding of the biochemical basis for this performance is rudimentary. Prior studies of the AFD thermoreceptor in Caenorhabditis elegans revealed a signaling cascade that depends on a trio ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 100 4 شماره
صفحات -
تاریخ انتشار 2008